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A method is given whereby the twenty-one independent elastic constants in the general
linear homogeneous anisotropic elastic body may be measured in a simple systematic
manner by using a static homogeneous deformation field called “pure extension”.

Two types of test are used throughout.

1. Introduction
Classical linear elasticity theory is assumed to
describe adequately the deformations of aniso-
tropic bodies which are subject to small strains
and small rotations. In general the elastic
properties of a homogeneous elastic body are
described in terms of twenty-one elastic constants.
Clearly, to obtain these constants, twenty-one
measurements are needed in general. It is the
purpose of this paper to discuss what constitute
appropriate static tests and measurements, and
to put forward what I think is a simple scheme
for the determination of the elastic constants.
The experimentalist has at his disposal the
surface tractions which he may vary at will on a
specimen. However, in so varying them, he will
not be able to produce a given arbitrary deform-
ation in a specimen of arbitrary elastic symmetry.
Of course, if the material has an appropriate
symmetry, he may be able to produce a desired
deformation in it, but this will not be true in
general. This is clearly seen. If the deformation
is inhomogeneous, then in general the stresses
are functions of position, and the equilibrium
equations cannot be satisfied unless suitable body
forces are supplied. It is proven formally here
that the only deformations which can be main-
tained in every homogeneous elastic body by the
action of surface forces alone are necessarily
homogeneous. However, particular inhomo-
geneous deformations can be maintained in
some bodies. For example, simple torsion can be
maintained in an isotropic body by surface

forces alone. The experimentalist does not know
a priori what elastic symmetries a specimen may
have. Accordingly it is pointless for him to
endeavour to maintain anything other than a
homogeneous deformation in the specimen by
the application of surface forces alone.

Thus, in the main, this paper is concerned
with a class of homogeneous deformations
suitable for the determination of the elastic
constants by means of static tests. This class of
homogeneous deformations is particularly useful
in that only two types of specimens are used
throughout. This means that essentially the same
two pieces of apparatus can be used for all the
tests.

We now proceed with the theory.

In the classical linear elasticity theory of

homogeneous bodies the stress-deformation
relation takes the form?
Ly = Ciju Oug/0X, ¢y

all quantities being referred to a fixed rectangular
Cartesian coordinate system x whose origin is 0.
In this system the components of the (symmetric)
Cauchy stress tensor are denoted by #;; and the
components of the elasticity tensor by Cj;y;-
The displacement u has components u; given by

where x is the position vector of the particle
initially at X. The elastic constants satisfy the
symmetry conditions

Cijkl = Cklij = sz'kl == szc . (3)

tLatin suffixes range over 1, 2, 3. Repeated suffixes are summed.
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As a result there are at most twenty-one inde-
pendent elastic constants.

Using equation 3, it is seen that equation 1
may be written

Ly = Cipr €t » “)
where the strains e;; are given by
8ui 811_7'

2e;; = 7%, T 5%, (%)

For a homogenous classical linear elastic body
the stress-strain relation is given by equation 4
where C;;;; are constants which satisfy equation
3. In the absence of body forces the equilibrium
equations

X, = Cijr XX, 0 (6)

must be satisfied. The traction across a surface
whose unit normal is n has components ¢(n);

given by
fm); = n; ty; = 1, Cijpy € - (7
The present work is concerned with the
measurement of the twenty-one elastic constants.
The purpose is to show the merits of a static
plane homogeneous deformation field, which I
called “pure extension” [1], in making a
systematic approach to the measurement of the
elastic constants by means of static tests. The
mathematics involved in pure extension is very
easy, vet it provides the key in a very simple
way on what experiments need to be performed.
Of course homogeneous deformations are the
simplest to treat from a mathematical point of
view. However there is a more compelling reason
for using homogeneous deformations in the
general theory of linear anisotropic bodies,
for they are the only deformations which can be
maintained in every body by the action of
surface forces alone. To maintain other than
homogeneous deformations in an arbitrary body
would in general require the application of body
forces. In fact the following analogue of
Ericksen’s Theorem [2] can be proved.

Theorem The only deformations which can be
maintained in every homogeneous compressible
linear anisotropic elastic solid with stress-
deformation relation (equation 1), under the
action of surface forces alone, is necessarily
homogeneous.

Proof Three particular choices of Cyy; will
indicate the method. The deformation field
which is sought can be maintained in every body
by the action of surface forces alone. In particular
it must be possible to maintain it by surface
forces alone in the body for which Cis, # 0,
Ciix = 0 otherwise. Then #,, = Ciapolys, t;; =0,
ij # 12. Hence the deformation must satisfy
the equilibrium equations (6) which now givet

dess  Deqy
iX, = X, 0 ®)

Next let Cyg15 7~ 0, Cyj; = 0 otherwise. Then
from equation 4 the only non-zero stresses are
tis = Cya1p €3 I35 = Cagrp €15 Again, the
deformation must satisfy the corresponding
equilibrium equations which give in this case,

oeyq

. Oegy Jegs
0X;

Finally let Cyy55 be the only non-zero com-
ponent of C,;,;. Then the only non-zero stress
component is £33 = Cjg35 €35. The deformation
must now satisfy

0e gy

X, = 0. (10)

Hence from equations 8, 9, and 10, e;, and €34
are both constants. In a similar way it can be
shown that the remaining strains e,; must also be
constant. It follows immediately that the
deformation is homogeneous and the theorem
is proved.

In the next section pure extension is described.
Then its use in measuring the elastic constants is
indicated.

2. Pure Extension

The deformation field called “pure extension” is
given by

u; = yA;B;X;, A/A;=B;B;=1. (11

The unit vectors A and B emanate from 0, the
origin of the co-ordinate system, and y is a
constant chosen so small that the displacement
field (equation 11) remains within the domain of
the linear theory. The stress field associated with
equation 11 is given by

ty =7y Cy A By, (12)

1This result may also be obtained by observing that if the deformation is to be possible for all Cijz,, then in particular
it must be possible both for Cixi and C*yxi where C*inl = Cynl, Gkl # 1212, C*1515 = ACysy, Where A is any
constant. One could then write down the equilibrium equations using Cy;x7 and C*;;z1. By subtracting corresponding

equations, equation 8 is obtained.
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and since these stresses are uniform, the
equilibrium equations 6 are satisfied.

The geometrical description of pure extension
given in [1] is repeated here.

Let A, B be fixed and consider first the case
when A . B 5 0. Then let D and E be any pair of
unit vectors such that A, D and E form a right-
handed triad of mutually perpendicular unit
vectors., From equation 11, since x = X + u, it
follows that

(x.D® + (x.Ep = (X.Dp + (X.E)p,
x.B=X.B(1+yA.B).

Thus the body (hereafter referred to as “the
specimen’) cut off by the circular cylinder of
radius g, (X . D)? 4+ (X . E)®> = %, and by the
parallel planes X.B=0, X.B=p, is de-
formed into the similar body cut off by the
circular cylinder (x . D) 4 (x . E)2 = 4%, and by
-the parallelplanesx . B==0,x. B=p (1 4 yA.B).
The plane ends of the specimen remain plane and
have the same area throughout the deformation.
Each plane section whose normal is B remains
plane and is shifted by an amount kyA . B
parallel to itself in the direction of A, where k is
the perpendicular distance of the plane section
from 0. Hence for yA . B > 0 we have what
might be called “pure extension” and for
yA . B < 0 what might be called “pure com-
pression”. When A . B = 1, y > 0, we have
simple extension, and when A . B =1,y < 0,
simple compression, in the usual terminology.
When A . B = 0, it is easy to see that equation
11 describes the simple shear of a unit cube whose
faces are

A.X=0,1;B.X=0,1; (AAB).X=0,1.

The cube is sheared by an amount .
Hence equation 11 may be interpreted as a
description of

simple shear if A. B =0 ;
simple extension or compression if A. B =

J 41
] pure extension or compression if A. B # 0,
| AB+#+1.
L (13)

In the next section particular choices of A and
B will be made, thus fixing the deformation
field (equation 11) up to a choice of y. The
corresponding specimen is determined by refer-
ring to equation 13.

12

For example, suppose A = (1, 0, 0), B =
{—1, 0, 0). From equation 11 the displacement
field is

= —yXy, uy =0, u3=0.

Note that A . B = —1, so it is seen by referring
to the table, 13, that the displacement describes
simple extension or compression along the X,
axis.

As another example, suppose A = (0, 1, 0),
J2B = (1, 0, —1). Then from equation 11

=0, 2u,=X; — X3, uy3=0.

Since A . B = 0, this displacement describes the
simple shear of a cube whose faces are X, = 0,
Xo=1X, — X3=0, J2; X; + X; =0,— /2.

Note from equation 12 that

tiy AiB; =y Cyjiy Ai Ay By B; . (14)
In view of equation 7 this may be written
tg; . A=y CyudiAx B, B; . (15)

Now t) is the traction across the surface whose
unit outward normal is B, and so t(y) . A is the
component along the axis of the specimen of the
traction over its plane end.

In the case of simple shear A . B = 0. Then
t(g) - A is the component of stress in the direction
of the shear acting along the face B. X = 1.

Thus if A and B are fixed, the displacement is
given by equation 11 where the magnitude and
sign of y are still undetermined. The shape of the
specimen is determined on using the table 13.
When the specimen shape is known the deform-
ation of the requisite type may be produced in
it, and t(m) . A and y measured. The expression
(equation 15) then connects these measurements
with a linear combination of the elastic constants.

3. Measuring the Elastic Constants
For convenience the twenty-one independent
elastic constants C,;;;; may be put into six
groups as follows. (i) Cir, Casser Cassss
(1) Ciara, Cazaz, Cayars (1) Crise, Coszas Casuis
(iv) Cuis Ciiis, Casess Caems Caasts Casas;
(v) Ciars, Casars Carza; (VD) Criasr Casmrs Camae
The first elastic constant in each of these
groups will be taken in turn, and it will be shown
how, by appropriate choice of A and B, an
appropriate experiment may be found through
which the clastic constant may be measured. A
choice of A and B that may be made in order to
determine the remaining elements in each of
these groups will also be given. Throughout it is
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assumed that the results of prior experiments
may be used in later ones.

The key to the whole process is equation 15
and the table 13. A and B are chosen in such a
way that the expression Cy;,; A;A; B B; involves
the desired elastic constant, but involves as few
as possible of the other elastic constants. Then
the displacement is determined from equation 11,
the specimen from the table 13 and ¢, . A and
v are measured experimentally.

(i) Take A = B = (1, 0, 0). From equation 11
Uy =1y Xy, uy =0, u3=0.

The specimen is a circular cylindrical rod with
axis along the x; axis and bounded by the
planes X; = 0 and X; = [ (say). Now 4, =
B, = 8,, and so

tiy AiB; = 15041 851 = 1y,
Cijn Aidy BiB; = Cijpg 81’1 811 Ou 5]‘1
= Cyyq -
Hence from equation 15
tp =% Cun -

Accordingly, by measuring #,; and v, the

value of Cy;;; can be determined.

A set of values of A and B suitable for the
determination of Cyypp and Cygys 18

Cosps :A=B=1(0,1,0),

Casss :A=B=(0,0,1).
(ii)) To determine Ci4,, let A = (1, 0, 0),
B = (0, 1, 0). Note A.B = 0. Then from

equation 11
U=y Xy, thh=1u3 =20

which describes the simple shear of the cube
whose facesare X; =0,1; X, =0,1; X; =0, 1.
NOW AL - 82'1, Bi - 8{2 S50 that
Ciiny A:edy BB, = Cijkl Su 37«1 512 372
= Cigs,
tig A:By = 115 .
From equation 15
f1a =7y Cias,
and hence, by measuring the shear stress #,, and
the amount of shear y, Cyyy, is calculated.

A set of values of A and B suitable for the
determination of C,q,5 and Cy, 4, is

Cages :A=1(0,1,0), B=(0,0,1),
Cys tA=(0,0,1), B=(1,0,0).

(iii) To obtain Cypap let y2 A = (1, 1, 0) ,

J2B=(1, —1,0), A.B = 0. From equation 11
the corresponding simple shear is given by

V2uy =y (X; — Xo), J2uy=y (X, — X)),
us=0.

The specimen is the cube whose faces are

X, + X,=0, y2; X; — X,=0, J2; X;=0, 1.
Now 4 Cyjy; A;Ax BB,
= Lkt (Sn + 81‘2) (5k1 + 57a2) (811 — 812)
i1 8;‘2)
- (Clm + Ciiar + Coni + Coja)
(O — 812) (851 — 652
= C1111 - 2C1122 + Coagss -

Thus from equation 15
4tw) . A =y (Con + Casez) — 2y Ciyas -

On measuring y and @) . A, and using the
results of (i), the elastic constant Ciis, is
determined.

A set of values of A and B suitable for the
determination of Cyess and Cyyyy IS

C2233 : \/2A = (0> 17 1) » \/2B = (09 19 —*1)
Casn : V2A=(1,0,1), 2B = (1,0, —1).

(iv) To obtain Cyyyp let A = (1,0,0), 2B =
(1, 1, 0). Then equation 11 gives the pure
extension

=y (X;+ Xy), g =1y =90.

The specimen is a section of the circular cylindri-
cal rod of arbitrary radius whose axis is along
the x, axis. The section is cut off by the planes
X1+ X, =0, X, + X, =1 (say). From equa-
tion 15

2ty . A = y (Ciyxx + Crana) + 2yCrupz -

Now Cj1;; has been determined under (i) and
Cyo1» under (ii). Thus, by measuring tg) . A
and y, Ciy12 can be determined.

Appropriate A and B to determine the
remainder of the constants in (iv) are given by

Cis : A= (1,0,0), «/ZB =(1,0,1);

2223 : A: (07 19 0)5 \/ZB - (O’ 19 1),
Coom : A=1(0,1,0), 2B = (1, 1, 0);
Cyann :A=1(0,0,1), 2B =(1,0,1);

Casas 1 A = (0,0, 1), {2B = (0, 1, 1).

(v) To obtain Cyp; let A = (1,0, 0}, 2 B =
0,1, 1), A. B = 0. Then by equation 11 the
simple shear is given by

V=9 X+ Xy, uy=0, u; =0,

The specimen is the cube whose faces are
X;=0,1;X,4+X;=0,42; Xo—X5=0, J2.
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From equation 15 it follows that

2ty . A = ¥ (Cizz + Cizs) + 2y Crors -
Now Cjg0 and Cis;; have been obtained under
(ii). Thus to obtain C,s only tg).A and y
need be measured.
Suitable choices of A and B to obtain Cyzy
and Cj;, 5, are to take for
C2321 :A: (0’ 1,0)’ \/2B = (190’ 1):
Csi32 :A=1(0,0,1), y2B=(1,1,0).
(vi) To obtain Cyas let 2 A = (1, 1, 0),
J2B = (1, 0, 1). Then from equation 11
2, =X, -+ X3, 2u,= X1+ X3, u3=0.
The specimen is a section of a circular cylindrical
rod, of arbitrary radius, whose axis is along
(1/42, 1/42, 0). The section is cut off by the
parallel planes X; + X; = 0, [ (say). From
equation 15

4ty . A =y Cpyy + ¥ (Cizn + Cigs + Cases)
+ 2y (Cips + Ciis) + 2y (Ciss + Ciges +
Cas12) + 2y Cipase
The first term on the right is obtained in (i),
the next group of terms under (ii), the next group
under (iv) and the fourth group under (v).
A set of values of A and B suitable for the
determination of C,agy and Cygy, is given by
C2231 : \/2A: (Oa 15 1)’ \/ZB = (15 1’0)7
Cszzt 2A=(1,0,1), y2B=(0,1,1).

4. Concluding Remarks

(i) In the procedure outlined here, various partic-
ular choices of A and B have been made from the
infinity of possibilities available. The motivation
has been in each case, a desire for mathematical
simplicity and economy of effort in determining
the constants. Obviously twenty-one other choices
of 4 and B would have done equally well
provided they were suitable chosen.

(ii) Two basic types of specimen have been used.
A cube is used in simple shear experiments and
circular cylindrical rods for the other cases.
The cubes are taken to be of unit length, and so
the same apparatus may be used for the various
simple shear experiments. For the other experi-
ments the same apparatus may be used in each
case provided the cylindrical specimens have
the same diameter.
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(iiiy There are other ways of measuring the
elastic constants. Suppose C,,z,. is to be
measured, where «, B3, v, € are fixed numbers
chosen from the range 1 2, 3. Let the deform-

ation
ui:KSi'yXea (16)

be produced in the body. Here K is a constant.
Then

8uk
a_X'L' =K Sk'y 861 ) tz'j =K C“'.ye ?

so that

(17)

tup=K Copye- (18)

Thus for the deformation (equation 16) the
measurement of ¢, , and K provides C, 4.,

This approach can be used for all «, j, y, €
and provides a simple way of interpreting the
elastic constants. However, different types of
measurement have to be made in each case.

Also, it has been assumed throughout that
tg) . A is to be measured. If t(z) . B is measured
instead, it provides a single constant in a number
of cases. From equation 17

tw .B=1;BB; =y CynB;B; A, B,. (19

Putting B; = 8;,, Ay = 8, this leads immedi-
ately to C,, 4, For example, suppose o = 2,
B = 1. Then equation 11 gives the simple shear

U=y Xy, g =1u3 =20, (20)

and from equation 19

tg) . B=13 =7y Cona.

Here t,, is a normal stress associated with the
simple shear. There is no reason for supposing
that this will be a small quantity compared with
110, SO there need not be any difficulty in making
accurate measurements.

(iv) A method similar to that used here would
work equally well in the case of more general
theories, where the number of independent
constants exceeds twenty-one.
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