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A method is given whereby the twenty-one independent elastic constants in the general 
linear homogeneous anisotropic elastic body may be measured in a simple systematic 
manner by using a static homogeneous deformation field called "pure extension". 
Two types of test are used throughout. 

1. Introduction 
Classical linear elasticity theory is assumed to 
describe adequately the deformations of aniso- 
tropic bodies which are subject to small strains 
and small rotations. In general the elastic 
properties of a homogeneous elastic body are 
described in terms of twenty-one elastic constants. 
Clearly, to obtain these constants, twenty-one 
measurements are needed in general. It is the 
purpose of this paper to discuss what constitute 
appropriate static tests and measurements, and 
to put forward what I think is a simple scheme 
for the determination of the elastic constants. 

The experimentalist has at his disposal the 
surface tractions which he may vary at will on a 
specimen. However, in so varying them, he will 
not be able to produce a given arbitrary deform- 
ation in a specimen of arbitrary elastic symmetry. 
Of course, if the material has an appropriate 
symmetry, he may be able to produce a desired 
deformation in it, but this will not be true in 
general. This is clearly seen. If  the deformation 
is inhomogeneous, then in general the stresses 
are functions of position, and the equilibrium 
equations cannot be satisfied unless suitable body 
forces are supplied. It is proven formally here 
that the only deformations which can be main- 
tained in every homogeneous elastic body by the 
action of surface forces alone are necessarily 
homogeneous. However, particular inhomo- 
geneous deformations can be maintained in 
some bodies. For example, simple torsion can be 
maintained in an isotropic body by surface 

forces alone. The experimentalist does not know 
a pr ior i  what elastic symmetries a specimen may 
have. Accordingly it is pointless for him to 
endeavour to maintain anything other than a 
homogeneous deformation in the specimen by 
the application of surface forces alone. 

Thus, in the main, this paper is concerned 
with a class of homogeneous deformations 
suitable for the determination of the elastic 
constants by means of static tests. This class of 
homogeneous deformations is particularly useful 
in that only two types of specimens are used 
throughout. This means that essentially the same 
two pieces of apparatus can be used for all the 
tests. 

We now proceed with the theory. 
In the classical linear elasticity theory of 

homogeneous bodies the stress-deformation 
relation takes the form~ 

tij = C~jk~ ~u~ /~Xt  (1) 

all quantities being referred to a fixed rectangular 
Cartesian coordinate system x whose origin is O. 
In this system the components of the (symmetric) 
Cauchy stress tensor are denoted by tij and the 
components of the elasticity tensor by C~jk~. 
The displacement u has components ui given by 

u =  x - -  X ; u i ( X )  = x i  - -  X i ,  (2) 

where x is the position vector of the particle 
initially at X. The elastic constants satisfy the 
symmetry conditions 

Cijk~ = Ck~ij = C j i ~  = Ci jzk .  (3) 
tLa t in  suffixes range over 1, 2, 3. Repeated suffixes are summed. 
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As a result there are at most twenty-one inde- 
pendent elastic constants. 

Using equation 3, it is seen that equation 1 
may be written 

ti~ = Ci~'~ e ~ ,  (4) 

where the strains e~. are given by 

Ou~ ~uj .  
2% = ~--~. q- ~-~ (5) 

For  a homogenous classical linear elastic body 
the stress-strain relation is given by equation 4 
where C i ~  are constants which satisfy equation 
3. In the absence of body forces the equilibrium 
equations 

ti~ ~2Ue 
a--X, = Ci~l~ OXzOX~ - -  0 ( 6 )  

must be satisfied. The traction across a surface 
whose unit normal is n has components t(n)i 
given by 

t(n)~ = n~ ti~ = n, Ci~z e ~  . (7) 

The present work is concerned with the 
measurement of the twenty-one elastic constants. 
The purpose is to show the merits of a static 
plane homogeneous deformation field, which I 
called "pure extension" [1], in making a 
systematic approach to the measurement of the 
elastic constants by means of static tests. The 
mathematics involved in pure extension is very 
easy, yet it provides the key in a very simple 
way on what experiments need to be performed. 

Of course homogeneous deformations are the 
simplest to treat from a mathematical point of 
view. However there is a more compelling reason 
for using homogeneous deformations in the 
general theory of linear anisotropic bodies, 
for they are the only deformations which can be 
maintained in every body by the action of 
surface forces alone. To maintain other than 
homogeneous deformations in an arbitrary body 
would in general require the application of body 
forces. In fact the following analogue of 
Ericksen's Theorem [2] can be proved. 

Theorem The only deformations which can be 
maintained in every homogeneous compressible 
linear anisotropic elastic solid with stress- 
deformation relation (equation 1), under the 
action of surface forces alone, is necessarily 
homogeneous. 

P r o o f  Three particular choices of C~jkz will 
indicate the method. The deformation field 
which is sought can be maintained in every body 
by the action of surface forces alone. In particular 
it must be possible to maintain it by surface 
forces alone in the body for which C1~2 :/= 0, 
C~jk~ = 0 otherwise. Then tl~ = C~2~2l~2, t~ = O, 
ij if= 12. Hence the deformation must satisfy 
the equilibrium equations (6) which now give~ 

~e~2 6qe12 
- -  = o -  ( 8 )  

~X~ ~X1 

Next let Caa~2 =/= 0, C~jkz = 0 otherwise. Then 
from equation 4 the only non-zero stresses are 
t12 = Caa,2 eaa, taa ----- Caa~, e,2. Again, the 
deformation must satisfy the corresponding 
equilibrium equations which give in this case, 

~e12 aeaa aeaa 
OX; = 0 ,  aX~ --  aX2 -- 0 �9 (9) 

Finally let Ca3aa be the only non-zero com- 
ponent of C~jkz. Then the only non-zero stress 
component is taa = Caaaa eaa. The deformation 
must now satisfy 

~eas 
= o .  (lO) 

aXa 

Hence from equations 8, 9, and 10, e~2 and e3a 
are both constants. In a similar way it can be 
shown that the remaining strains eij must also be 
constant. It follows immediately that the 
deformation is homogeneous and the theorem 
is proved. 

In the next section pure extension is described. 
Then its use in measuring the elastic constants is 
indicated. 

2. Pure Extension 
The deformation field called "pure extension" is 
given by 

Ui = 7 A i B s X j ,  A i A i  = BiBi  = 1 . (11) 

The unit vectors A and B emanate from O, the 
origin of the co-ordinate system, and y is a 
constant chosen so small that the displacement 
field (equation 11) remains within the domain of 
the linear theory. The stress field associated with 
equation 11 is given by 

tij = ~ Cijtc ~ A e  B~ , (12) 
tThis result may also be obtained by observing that if the deformation is to be possible for all C~j~z, then in particular 
it must be possible both for Cls~l and C*tykt where C*~j~I = C~j~I, ijkl # 1212, C'12a~ = AC1212 where A is any 
constant. One could then write down the equilibrium equations using C~j~I and C*~el. By subtracting corresponding 
equations, equation 8 is obtained. 
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and since these stresses are uniform, the 
equilibrium equations 6 are satisfied. 

The geometrical description of pure extension 
given in [1] is repeated here. 

Let A, B be fixed and consider first the case 
when A.  B :A 0. Then let D and E be any pair of  
unit vectors such that A, D and E form a right- 
handed triad of mutually perpendicular unit 
vectors. From equation 11, since x = X + u, it 
follows that 

(x .  D) z + (x .  E) 2 = (X. D) 2 + (X. E) ~, 
x . B = X . B ( 1  + y A . B ) .  

Thus the body (hereafter referred to as "the 
specimen") cut off by the circular cylinder of 
radius a, (X . D) 2 + (X . E) z = a 2, and by the 
parallel planes X .  B = 0 ,  X . B  = p ,  is de- 
formed into the similar body cut off by the 
circular cylinder (x.  D) 2 + (x .  E) z = a 2, and by 
the parallelplanes x .  B ~ 0, x .  B = p  (1 + yA. B). 
The plane ends of the specimen remain plane and 
have the same area throughout the deformation. 
Each plane section whose normal is B remains 
plane and is shifted by an amount k y A .  B 
parallel to itself in the direction of A, where k is 
the perpendicular distance of the plane section 
from 0. Hence for 7'A �9 B > 0 we have what 
might be called "pure extension" and for 
y A .  B < 0 what might be called "pure com- 
pression". When A . B = 1, Y > 0, we have 
simple extension, and when A .  B = 1, y < 0, 
simple compression, in the usual terminology. 

When A .  B = 0, it is easy to see that equation 
11 describes the simple shear of a unit cube whose 
faces are 

A . X = O ,  1 ; B . X = O ,  1 ; ( A A B ) . X = O ,  1 . 

The cube is sheared by an amount y. 
Hence equation 11 may be interpreted as a 

description of 

I simple shear if A .  B = 0 ; 
simple extension or compression if A .  B = 

_J •  
-] pure extension or compression if A. B 4: 0, 
I A . B 4 =  -~ 1. 
(_ 03) 

In the next section particular choices of A and 
B will be made, thus fixing the deformation 
field (equation 11) up to a choice of y. The 
corresponding specimen is determined by refer- 
ring to equation 13. 
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For example, suppose A -~ (1, 0, 0), B ~- 
(--1, 0, 0). From equation 11 the displacement 
field is 

ul = - - 7 X 1 ,  u~ = O, ua ~ O. 

Note that A .  B = --1, so it is seen by referring 
to the table, 13, that the displacement describes 
simple extension or compression along the xl 
axis. 

As another example, suppose A = (0, 1, 0), 
~/2B = (1, 0, --1). Then from equation 11 

u 1 = 0 ,  x / 2 u 2 = X 1 - - ) i r a ,  u a = 0 .  

Since A .  B = 0, this displacement describes the 
simple shear of a cube whose faces are X~ = 0, 
X 2 = I ; X , - - X a = O ,  ~/2; X, + Xa = 0 , - -  42. 

Note from equation 12 that 

tij AiBj = y Ci~kz Ai Ak Bt B~ . (14) 

In view of equation 7 this may be written 

t(B~ �9 A = 7 Ci~k~ Ai Ak Bl Bj . (15) 

Now t(m is the traction across the surface whose 
unit outward normal is B, and so t(m �9 A is the 
component along the axis of the specimen of the 
traction over its plane end. 

In the case of simple shear A . B = 0. Then 
t(B) �9 A is the component of stress in the direction 
of the shear acting along the face B .  X = 1. 

Thus if A and B are fixed, the displacement is 
given by equation l l  where the magnitude and 
sign of Y are still undetermined. The shape of the 
specimen is determined on using the table 13. 
When the specimen shape is known the deform- 
ation of the requisite type may be produced in 
it, and t(B) �9 A and 9/measured. The expression 
(equation 15) then connects these measurements 
with a linear combination of the elastic constants. 

3. Measuring the Elastic Constants 
For convenience the twenty-one independent 
elastic constants Cijka may be put into six 
groups as follows. (i) Cml, C2222, Caaaa; 
( i i)  C1212 , C2323 , C3131 ; (iii) C~,22, Cu2aa, Caan; 
(iv) Cm2, Cma, C222a, C2221, Caaal, Caaa2; 
(v) c1=13, c.~,, c~1.; (vi) c,1., c = . .  c3~1~. 

The first elastic constant in each of  these 
groups will be taken in turn, and it will be shown 
how, by appropriate choice of A and B, an 
appropriate experiment may be found through 
which the elastic constant may be measured. A 
choice of A and B that may be made in order to 
determine the remaining elements in each of 
these groups will also be given. Throughout it is 
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assumed that  the results of  pr ior  experiments  
may  be used in later ones. 

The key to the whole process is equat ion 15 
and the table 13. A and B are chosen in such a 
way that  the expression C~jk~ A~Ak BzBj involves 
the desired elastic constant,  but  involves as few 
as possible of  the other elastic constants.  Then 
the displacement  is determined f rom equat ion 11, 
the specimen f rom the table 13 and t(m . A and 
y are measured experimentally. 

(i) Take  A = B = (1, 0, 0). F r o m  equat ion 11 

H ,  = 7 X , ,  l-g 2 = 0 ,  /X 3 = 0 �9 

The specimen is a circular cylindrical rod with 
axis along the x ,  axis and bounded  by the 
planes X, = 0 and X, = l (say). N o w  Ai = 
Bi = 8il and so 

t~ a AiB~ = tit 3i~ ~ j ,  = l'11 , 

Cijkt A~A~ B~B~ = Ci~ez 3a 8~, all adl 
= C l 1 1 1  . 

Hence f rom equat ion 15 
t** = 7 C1,*1  �9 

Accordingly,  by measur ing ql  and 7, the 
value of  C m l  can be determined. 

A set of  values of  A and B suitable for  the 
determinat ion of  C ~  and C a a a a  is 

C ~ 2 " A = B = ( 0 , 1 , 0 ) ,  
Caaaa : A = B = (0, 0, 1).  

(ii) To  determine CI21~, let A = (1, 0, 0), 
B = (0, 1, 0). No te  A . B = 0. Then f rom 
equat ion 11 

Ul = 7 X 2  , U2 = /AS = 0 

which describes the simple shear of  the cube 
whose faces are X~ = 0, 1 ; X~ = 0, 1 ; Xa = 0, 1. 
N o w  Ai = 3il, B~ = 8i~ so that  

Ci~z AiA~ BiBs = C.i~t 3i* 3l~ 1 8t2 3~2 
C1212  

tiy A~Bs = t,2 �9 

F r o m  equat ion 15 

and hence, by measur ing the shear stress t,~ and 
the amoun t  of  shear 7, C,~,~ is calculated. 

A set of  values of  A and B suitable for  the 
determinat ion of  C2a~a and Ca,a, is 

C=a~a : n  = (0, 1, 0 ) ,  B = (0, 0, 1), 
Ca, a, : A = (0,  0,  1 ) ,  B = (1,  0,  0 ) .  

(iii) To  obtain C,l~Z let x/2 A = (1, 1, 0) , 

~/2 B = (1, - -1,  0), A .  B = 0. F r o m  equat ion  1 1 
the corresponding simple shear is given by 

` / 2 u ~ = y ( X a - - X ~ ) ,  ` / 2 u 2 = y ( X ~ - - X 2 ) ,  
/As = 0 .  

The specimen is the cube whose faces are 

X I +  X 2 = 0 ,  ` / 2 ; ) ( 1 - - X 2 = 0 ,  s / 2 ; X  a = 0 ,  1. 

N o w  4 Ci~kz AiAk  BtBj 
= Cijs (8i, + 8i2) (3kl 4- ak2) (8l, - -  312) 

(851 - a;~) 
= ( G ; , t  + C,j~t + C2j, z + C~;2l) 

(a~l - a ~ )  ( G  - G )  
= C m ,  - -  2 C * * ~  + C..222 �9 

Thus f rom equat ion 15 
4t(m . A = 7 ( C m ,  + C2~22) --  27 C1,22 �9 

On measur ing Y and t(B).A,  and using the 
results o f  (i), the elastic constant  C1,22 is 
determined. 

A set o f  values of  A and B suitable for  the 
determinat ion of  C22aa and C3a,I is 

C~2aa" ,]2 A = (0 ,1 ,1 )  , ~ / 2 B = ( 0 , 1 , - - 1 )  
Caan : q ' 2 A = ( 1 , 0 , 1 ) ,  ~ / 2 B = ( 1 , 0 , - - 1 ) .  

(iv) To  obtain Cm2 let A = (1, 0, 0), `/2 B = 
(1, 1, 0). Then equat ion 11 gives the pure  
extension 

`/2 u, = 7 (X1 + J(2), u2 = ua = 0 .  

The specimen is a section of  the circular cylindri- 
cal rod of  arbi t rary  radius whose axis is a long 
the x ,  axis. The section is cut off by the planes 
X1 + J(2 = 0 ,  X1 + X-~ = 1 (say). F r o m  equa- 
t ion t5 

2t(m . A : y ( C , m  + C,2,2) + 2 7 C 1 , 1 2  �9 

N o w  C l m  has been determined under  (i) and 
C,212 under  (ii). Thus,  by measur ing t (m.  A 
and 7, Cm2 can be determined. 

Appropr ia te  A and B to determine the 
remainder  of  the constants  in (iv) are given by 

C m a  " A = (1, 0, 0), ` /2B = (1, 0, 1); 
C222a : A = (0, 1, 0), ` /2B = (0, 1, 1); 
C222, : a = (0,  1, 0) ,  x/2 B = (1, 1, 0) ;  
Caaa, : A = (0, 0, 1), `/2 B = (1, 0, 1); 
Caaa2 : A = (0,  0,  1), , /2 B = (0, 1, 1). 

(v) To  obtain C,2,a let A = (1, 0, 0), ~/2 B = 
(0, 1, 1), A . B = 0. Then by equat ion 11 the 
simple shear is given by 

, /2 u,  = 7 (Jr,  + J G ) ,  u2 = 0 ,  ua = 0 .  

The specimen is the cube whose faces are 
X , = 0 ,  1 ; X ~ + X a = 0 , ` / 2  ; X 2 - - X s = - 0 ,  ,/2. 
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From equation 15 it follows that 

2t(m. A = y (C~2  + Clala) + 2Y C12~8 �9 
Now C~212 and C~z~a have been obtained under 
(ii). Thus to obtain C~2ta, only t(m. A and y 
need be measured. 

Suitable choices of A and B to obtain C~a~t 
and Ca~a2 are to take for 

C 2 3 2 x : A = ( 0 , 1 , 0 ) ,  ~ / 2 B = ( 1 , 0 , 1 ) ,  
C 8 1 a 2 : A = ( 0 , 0 , 1 ) ,  ~ / 2 B = ( 1 , 1 , 0 ) .  

(vi) To obtain Cn2a let ~/2 A = (1, 1, 0), 
~/2 B = (1, 0, 1). Then from equation 11 

2u1=  X1 + X~, 2u2 = )(1 + Xs,  ua = 0.  
The specimen is a section of a circular cylindrical 
rod, of arbitrary radius, whose axis is along 
(1/,/2, 1/42, 0). The section is cut off by the 
parallel planes X1 + Xa = 0, l (say). From 
equation 15 

4t(m. A = y Cl111 i/- 7 (C1212 -}- C1813 -~- C2a2a) 
+ 2r (Cnl~ + Cruz) q- 2y (C~2,a + Cla=a + 
C2ale) q- 2y Cl12a. 
The first term on the right is obtained in (i), 
the next group of terms under (ii), the next group 
under (iv) and the fourth group under (v). 

A set of values of A and B suitable for the 
determination of C2~a, and C8312 is given by 

C~za,: ~ / 2 A = ( 0 , 1 , 1 ) ,  ~ / 2 B = ( 1 , 1 , 0 ) ,  
Caa~: ~ 2 A = ( 1 , 0 , 1 ) ,  ~ / 2 B = ( 0 , 1 , 1 ) .  

4. Concluding Remarks 
(i) In the procedure outlined here, various partic- 
ular choices of A and B have been made from the 
infinity of possibilities available. The motivation 
has been in each case, a desire for mathematical 
simplicity and economy of effort in determining 
the constants. Obviously twenty-one other choices 
of A and B would have done equally well 
provided they were suitable chosen. 
(ii) Two basic types of specimen have been used. 
A cube is used in simple shear experiments and 
circular cylindrical rods for the other cases. 
The cubes are taken to be of unit length, and so 
the same apparatus may be used for the various 
simple shear experiments. For the other experi- 
ments the same apparatus may be used in each 
ease provided the cylindrical specimens have 
the same diameter. 

(iii) There are other ways of measuring the 
elastic constants. Suppose C=~• is to be 
measured, where % /3, y, E are fixed numbers 
chosen from the range 1 2, 3. Let the deform- 
ation 

ui = K 8iy X e ,  (16) 

be produced in the body. Here K is a constant. 
Then 

6~/.//c 
= K 3kr  3 ~ ,  tij = K Ci ,  ye , (17) ax, 

so that 
t ~  = K C~By~. (18) 

Thus for the deformation (equation 16) the 
measurement of tap and K provides C~#7,. 

This approach can be used for all c~, /3, y, E 
and provides a simple way of interpreting the 
elastic constants. However, different types of  
measurement have to be made in each case. 

Also, it has been assumed throughout that 
t(m �9 A is to be measured. If  t(B). B is measured 
instead, it provides a single constant in a number 
of cases. From equation 17 

t(m �9 B = tij BiBj = y Cijlcg Bi Bj A~ Bt, (19) 

Putting B~ = 8~=, A~ = 8kg, this leads immedi- 
ately to C , ~ .  For example, suppose a = 2, 
13 = 1. Then equation 11 gives the simple shear 

ul = y X2, u2 = ua = 0 ,  (20) 

and from equation 19 

t(B ) . B : t~2 : y C2212 . 

Here t22 is a normal stress associated with the 
simple shear. There is no reason for supposing 
that this will be a small quantity compared with 
tl~, so there need not be any difficulty in making 
accurate measurements. 
(iv) A method similar to that used here would 
work equally well in the case of more general 
theories, where the number of independent 
constants exceeds twenty-one. 
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